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Stochastic delineation of well capture zones

Abstract In this work, we describe a stochastic method
for delineating well capture zones in randomly hetero-
geneous porous media. We use a moment equation (ME)
approach to derive the time-dependent mean capture
zones and their associated uncertainties. The mean
capture zones are determined by reversely tracking the
non-reactive particles released at a small circle around
each pumping well. The uncertainty associated with the
mean capture zones is calculated based on the particle
displacement covariances for nonstationary flow fields.
The flow statistics are obtained either by directly solving
the flow moment equations derived with a first-order
ME approach or from Monte Carlo simulations (MCS)
of flow. The former constitutes a full ME approach, and
the latter is a hybrid ME-MCS approach. This hybrid
approach is invoked to examine the validity of the
transport component of the stochastic method by
ensuring that the ME and MC transport approaches
have the same underlying flow statistics. We compared
both the full ME and the hybrid ME-MCS results with
those obtained with a full MCS approach. It has been
found that the three approaches are in excellent agree-
ment when the variability of hydrologic conductivity is
small (r2

Y ¼ 0:16). At a moderate variability (r2
Y ¼ 0:5),

the hybrid ME-MCS and the full MCS results are in
excellent agreement whereas the results from the full ME
approach deviate slightly from the full MCS results. This
indicates that the (first-order) ME transport approach
renders a good approximation at this level of variability
and that the first-order ME flow approximation may not
be sufficiently accurate at this variability in the case of
divergent/convergent flow. The first-order ME flow
approach may need to be corrected with higher-order
terms even for moderate r2

Y although the literature
results reveal that the first-order ME flow approach is

robust for uniform mean flow (i.e., giving accurate re-
sults even with r2

Y as large as four).

Keywords Stochastic method Æ Capture zone
Heterogeneity Æ Nonstationary Æ Moment equation
approach Æ Monte Carlo simulation

1 Introduction

An accurate description of well capture zones plays an
important role in well-head protection and designing
remediation systems for contaminated aquifers. Many
models have been developed in delineating well capture
zones for flow in both homogeneous and heterogeneous
porous media. Early models are based on the assump-
tion that the permeability of the porous medium is
homogeneous, which lead to analytical solutions. Bear
and Jacobs (1965) derived an analytical equation for the
isochrones of a fully penetrating well pumping in a
confined aquifer with a uniform background hydraulic
gradient. Javandel and Tsang (1987) provided capture-
zone type curves for several well placement configura-
tions. Other analytical models for capture zones are
available for confined and unconfined aquifers (Grubb,
1993), recharged aquifer systems Lerner (1992), a double
well system (pumping-pumping and pumping-injection)
(Zhan, 1998), two arbitrarily located wells (Shan, 1999),
and horizontal wells (Zhan, 1999). Bhatt (1993) inves-
tigated the influence of the main aquifer properties, such
as effective porosity and saturated thickness, on the
transverse and longitudinal extent of a capture zone in a
confined aquifer. Some other factors that influence the
capture zone geometry have been studied including
aquifer anisotropy (Schafer, 1996; Bair and Lahm, 1996;
Zlotnik, 1997) and partial penetration of pumping wells
(Bair and Lahm, 1996; Zlotnik, 1997).

In the recent years, with the Monte Carlo method
several studies have considered the variability of med-
ium properties in delineating the well capture zone
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(Varljen and Shafer, 1991; Bair et al., 1991; Cole
and Silliman, 1997; Franzetti and Guadagnini, 1996;
Guadagnini and Franzetti, 1999; Riva et al., 1999; van
Leeuwen et al., 1998). There are several problems with
this probability-based approach in delineating well
capture zones. The computation effort in this approach
can be very large. For each Monte Carlo realization, a
particle is released at all grid nodes, requiring numerical
computation of a particle trajectory starting from each
node until the particle either is captured by the well or
reaches the boundary of the flow domain. This algo-
rithm could be even more cumbersome for a system with
multiple wells. The limitation of Monte Carlo simula-
tions has been discussed in the literature (e.g., Neuman,
1997; Guadagnini and Neuman, 1999; Zhang, 2002): the
lack of convergence criteria and the requirement of high
computational efforts, among others. The computa-
tional demand is even large if there are uncertainties in
boundary and initial conditions.

Kunstmann and Kinzelbach (2000) computed the
capture zones using the first-order second moment
method on the basis of a Eulerian framework. They
derived moment equations for flow and transport
equations, and the mean capture zone was defined as the
concentration isoline of c ¼ 0:5 and the confidence
intervals are determined by plus or minus a few standard
deviations of concentration. One problem with this
algorithm is that it works only for a single well, because
in the case of multiple wells it is difficult to distinguish
the contributions of different wells to the concentration
field. In such a situation, the concentration isoline of
c ¼ 0:5 may not be appropriate to define the mean
capture zones. It is seen from their examples for the
cases with a single well that the mean capture zones and
the associated confidence intervals are not in good
agreement with Monte Carlo simulation results for the
unconditional case, even though the variance of the log
transmissivity is as low as 0.16.

Recently, Stauffer et al. (2002) briefly reported an
investigation on the uncertainty quantification of the well
capture zones and well catchments in heterogeneous
media using a first-order approximation. Specifically, the
capture zone of a well for a given time is determined by
backward movement of many particles starting near the
well, and the uncertainty bandwidth of capture zones is
approximated using longitudinal and transversal particle
displacement covariances along and normal to the mean
particle trajectory. One of limitations in their work is that
the nonstationary velocity covariances were approxi-
mated by locally scaling the stationary velocity covari-
ance derived by Rubin (1990) for uniform mean flows.

Based on a general stochastic model developed for
advective transport of conservative solutes in variably
saturated multi-dimensional nonstationary flow in ran-
domly heterogeneous porous media (Lu and Zhang,
2003a), Lu and Zhang (2003b) present a moment
equation (ME) based stochastic approach to delineate
the well capture zones for a system with an arbitrary
number of wells (either pumping or injection). A certain

number of particles are released around each pumping
well in the (first-order) mean flow field and the reverse
particle tracking is performed. The first-order mean
capture zones are delineated using the first-order mean
flow velocity. The confidence intervals of capture zones
are derived from the particle displacement covariances
for nonstationary flows (Lu and Zhang, 2003b), which
are expressed in terms of the state transition matrix that
satisfies a time-varying dynamic equation whose coeffi-
cient matrix is the derivative of the mean Lagrangian
velocity field. For a strongly nonuniform flow field such
as in the presence of pumping or injection wells, the
computation of the state transition matrix is problem-
atic. Lu and Zhang (2003b) proposed two simple ap-
proaches to compute the (first-order) state transition
matrix for the case of statistically homogeneous porous
media, i.e., using the exact solution for a rectangular
domain or using the potential theory otherwise. For sev-
eral cases with one or two pumping wells, they validated
their transport model by comparing the scatter plots of
particles’ positions at given elapsed times from Monte
Carlo simulations (MCS) against the mean capture zones
with confidence intervals at the given times, and an
excellent agreement is found between the model results
and those fromMonte Carlo simulations. However, their
transport approachmay be best called a hybridME-MCS
approach in that the flow statistics to their transport
model, i.e., the mean flow field and the velocity covari-
ances, are computed from Monte Carlo simulations
rather than from solving the flow moment equations.

The objective of this study is to investigate the effi-
ciency and accuracy of the two methods in calculating
the state transition matrix, and more importantly, to
investigate the accuracy of a full ME approach. In this
approach, the stochastic transport model is evaluated
with the mean velocity and velocity covariances
obtained from directly solving the flow moment equa-
tions rather than from Monte Carlo simulations as in
the hybrid ME-MCS approach of Lu and Zhang
(2003b).

2 Mathematical formulation

We consider transient flow in saturated porous media
satisfying the following continuity equation and Darcy’s
law:

�r � qðx; tÞ þ
Xnw

j¼1
Qjwdðx� xjÞ ¼ Ss

ohðx; tÞ
ot

ð1Þ

qðx; tÞ ¼ �KðxÞrhðx; tÞ ð2Þ

subject to initial and boundary conditions

hðx; 0Þ ¼ h0ðxÞ x 2 X

hðx; tÞ ¼ h1ðx; tÞ x 2 CD ð3Þ
qðx; tÞ � nðxÞ ¼ Qðx; tÞ x 2 CN
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where q is the specific discharge, h(x, t) is the hydraulic
head, h0(x) is the initial head in the domainW, h1(x, t) is the
prescribed head on Dirichlet boundary segments GD,
Q(x,t) is the prescribed flux across Neuman boundary
segments GN, n(x) is an outward unit vector normal to the
boundary, Ss is the specific storage, K(x) is the saturated
hydraulic conductivity (assumed to be isotropic locally),
nw is the number of pumping (or injection)wells, andQjw is
the pumping (or injection) rate of the jth well located at xj.

2.1 First-order moment equations

First-order moment equations for flow in unsaturated/
saturated porous media have been developed by
Zhang and Lu (2002) and Lu and Zhang (2002), and
they can be easily reduced to equations for saturated
flow. However, for completeness, here we briefly out-
line the procedure. For simplicity, we assume that
porosity /, specific storage Ss, and all boundary and
initial conditions are deterministic. For random
boundary and initial conditions, the readers are re-
ferred to Zhang and Lu (2002) or Lu and Zhang
(2002) for details. Again, we assume that the hydraulic
conductivity K(x) follows a log normal distribution,
and work with the log-transformed variable Y(x) ¼ ln
(K(x)) ¼ ÆY(x)æ + Y¢(x). One may express h(x, t) as
an infinite series as h(x, t) ¼ h(0) + h(1) + h(2) +� In
this series, the order of each term is with respect to
rY , the standard deviation of Y(x). After combining
(1) and (2), substituting the expansions of h(x, t) and
Y(x), and collecting terms at separate order, one ob-
tains the following equations governing the first two
moments of head,

o2hð0Þðx; tÞ
ox2i

þ ohY ðxÞi
oxi

ohð0Þðx; tÞ
oxi

þ
Xnw

j¼1

Qjw

KGðxÞ
dðx� xjÞ

¼ Ss

KGðxÞ
ohð0Þðx; tÞ

ot

hð0Þðx; 0Þ ¼ hh0ðxÞi x 2 X

hð0Þðx; tÞ ¼ hh1ðx; tÞi x 2 CD; t > 0

niðxÞ
ohð0Þðx; tÞ

oxi
¼ �hQðx; tÞi=KGðxÞ x 2 CN ; t > 0 ð4Þ

o2Chðx; t; v; sÞ
ox2i

þ ohY ðxÞi
oxi

oChðx; t; v; sÞ
oxi

¼ Ss

KG
ðxÞ oChðx; t; v; sÞ

ot
� ohð0Þðx; tÞ

oxi

oCYhðx; v; sÞ
oxi

� CYhðx; v; sÞ o2hð0Þðx; tÞ
ox2i

þ ohY ðxÞi
oxi

ohð0Þðx; tÞ
oxi

� �

Chðx; 0; v; sÞ ¼ 0 x 2 X

Chðx; t; v; sÞ ¼ 0 x 2 CD; t > 0

niðxÞ
oChðx; t; v; sÞ

oxi
þ CYhðx; v; sÞ ohð0Þðx; tÞ

oxi

� �
¼ 0

x 2 CN ; t > 0 ð5Þ

where KG is the geometric mean, and CYh(v; x, t) sat-
isfies an equation similar to (5), replacing CYh(x; v, s)
and Ch(x,t; v, s) in (5) by CY(x; v) and CYh(v; x, t),
respectively. The first two moments of the flux are
(Zhang, 2002)

qð0Þðx;tÞ¼�KGðxÞrhð0Þðx;tÞ

Cqðx;t;v;sÞ¼KGðxÞKGðvÞ CY ð½ x;vÞrxhð0Þðx;tÞrT
v hð0Þðv;sÞ

þrxhð0Þðx;tÞrT
v CYhðx;v;sÞ

þrxCYhðv;x;tÞrT
v hð0Þðv;sÞþrxrT

v Chðv;s;x;tÞ
i

ð6Þ

The first two moments of the velocity field can be
derived from (6).

2.2 Mean trajectory and displacement covariances

For a given flow field, the trajectory of a particle lo-
cated at a at t ¼ t0 is described by the kinematic
equation, dX(t; a, t0)/dt ¼ V[X(t; a, t0)], subject to the
initial condition X(t0; a, t0) ¼ a. Here X(t; a, t0) stands
for the particle position at time t and V[X(t; a, t0)] the
(Lagrangian) velocity of the particle at t. The first-
order mean trajectory ÆXtæ and the displacement co-
variances have been given by Lu and Zhang (2003a)
as

dhXti
dt
¼ hV hXti½ �i ð7Þ

Xij ¼ hX 0t;iX 0t;ji

¼
Z t

t0

Z t

t0

Uikðt; sÞUjlðt; s0ÞhV 0k hXsið ÞV 0l hX0si
� �

idsds0 ð8Þ

Here F(t,s) is called the transition matrix (or funda-
mental matrix) satisfying dF(t, s)/dt ¼ B(t)F(t, s) with
initial condition F(s, s) ¼ E, the identical matrix, and
B(t) is the derivative of mean (Lagrangian) velocity
ÆV[ÆXtæ]æ with respect to the mean trajectory ÆXtæ. In
the case that the flow field is stationary and unidi-
rectional, the state transition matrix F(t, s) equals the
identical matrix and our expression recovers the well-
known expression of Dagan (1984). For the nonuni-
form but unidirectional flow, F(t, s) becomes an
exponential matrix function and our expression re-
duces to those of Butera and Tanda (1999) and Sun
and Zhang (2000).
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3 Numerical implementation

The moment equations in general cannot be solved
analytically. Numerical implementation of these equa-
tions has been discussed in detail by Zhang and Winter
(1998). Upon solving these moment equations, the
first-order mean Eulerian velocity field and velocity
covariances can be calculated. For a particle released at
location X0 at time t ¼ 0, the first-order mean Lagrang-
ian velocity field and its covariances can be derived based
on the first-order mean Eulerian velocity field and
velocity covariances. The velocity field is then negated for
reversed particle tracking. The mean trajectory up to
first-order can be obtained by solving (7), using the ne-
gated velocity field. The derivatives of the first-order
mean Lagrangian velocity field with respect to the mean
trajectory (along the particle path), Bij(t), can be calcu-
lated by numerically taking derivatives of the mean
Lagrangian velocity field.

It is worthy to note that, in general, there is no simple
analytical expression for the transition matrix F(t, s)
(unless B is time-invariant or diagonal, which yields
the respective result of F(t, s) ¼ exp[B(t-s)] or F(t,
s) ¼ exp

R t
s Bðs0Þds0

� �
), the moments Xij have to be eval-

uated numerically, which requires evaluation of the state
transition matrix F(t, s) for certain values of t and s . Lu
and Zhang (2003a) proposed an algorithm to compute
F(t, s). When the flow field is highly non-uniform, for
example, in the presence of pumping or injection wells, it
is difficult to calculate F(t,s) with desired accuracy,
mainly due to errors introduced in numerically com-
puting matrix B.

In some special cases, however, the first-order
approximation of the B matrix can be derived analyti-
cally, instead of calculating it numerically by taking
derivatives of the first-order mean velocity field. Lu and
Zhang (2003b) suggested two simple approaches to
compute matrix B. If the porous medium is statistically
homogeneous and the flow domain is rectangular, the
exact solution of the first-order steady-state mean head
field (and thus the velocity field and the B matrix) can be
obtained analytically and expressed as infinite series. Of
course, the accuracy of calculated Bij(t) depends on the
number of terms in truncation of these infinite series. In
the cases that the flow domain is not rectangular but the
porous medium is still statistically homogeneous, a first-
order analytical expression for matrix B may be derived
using the potential theory (Lu and Zhang, 2003b).
Though the potential is derived for homogeneous media
with infinite extent and a mean uniform regional
flow, the B matrix in this approach is independent of
the mean uniform regional flow and depends only on the
pumping (or injection) rate and the distance between the
particle and well locations. When the particle is far away
from the well, matrix B approaches zero, as is expected
for the mean uniform regional flow. In this study, the
above two approaches will be used to compute the B

matrix and the resulted mean capture zones with

confidence intervals will be compared with Monte Carlo
results.

4 Construction of mean capture zones and confidence
intervals

In our approach, the time-dependent well capture zones
are determined by reverse particle tracking. For a flow
field with pumping wells, streamlines (or pathlines for
transient flow) converge to the wells and thus the flow
field has singularities at the well locations. In the reverse
particle tracking process, once a particle reaches a well,
it is impossible to track it reversely and to tell where the
particle came from. As a result, a small r >0 is selected
and the particles are released at a circle of radius r
around each pumping well. Particles are arranged
around each pumping well in such a way that more
particles are on the down gradient direction of the mean
uniform background flow. For example, if the uniform
background flow is from the right to the left, more
particles will be placed at the left side of the pumping
wells. The mean trajectories ÆXtæ and displacement co-
variances Xij are then computed based on (7) and (8) for
all particles released around all pumping wells. For a
pumping well located at (xw1, xw2), the mean position
ÆXtæ and displacement covariance Xij at any time for any
released particle are then converted to the local polar
coordinates centred at the well location. The first-order
mean distance ÆRæ from the well, its variance r2

R, and the
first-order mean angle Æhæ from x1 axis (pointed to the
right) are computed from the mean trajectories and
the displacement covariance according to the following
formulae (Lu and Zhang, 2003b):

hRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX1i � xw1ð Þ2þ hX2i � xw2ð Þ2

q

r2
R ¼

�
hX1i � xw1ð Þ2X11 þ 2 hX1i � xw1ð Þ hX2i � xw2ð ÞX12

þ hX2i � xw2ð Þ2X22

�
=hRi2

hhi ¼ tan�1
hX2i � xw2

hX1i � xw1

� 	
ð9Þ

For any elapsed time, the convex hull that connects the
endpoints of the mean trajectories (ÆRæ, Æhæ) of all
particles released around the well is considered the
position of the mean capture zone for this well at the
given time. The capture zone intervals at the 95%
confidence level can be constructed by plus and minus
1.96rR on the mean capture zones, if the distribution of
particles along radial directions at any given time is
normal. If the distribution is not normal, the confidence
intervals may be constructed using two quantiles r0.025
and r0.975. By quantile rq, we mean that a q fraction of
points is below the given value rq. For example, the
0.975 quantile, r0.975, is the value below which 97.5% of
data fall and above which 2.5% of data fall. Lu and
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Zhang (2003b) showed that the difference of confidence
intervals derived from these two methods is not signif-
icant. As a result, in this paper, the capture zone
intervals at the 95% confidence level are constructed
using ÆRæ plus and minus 1.96rR along the direction of
the mean angle Æhæ. As shown by Lu and Zhang
(2003b), this approach is applicable to the situation of
multiple wells.

5 Illustrative examples

To illustrate the proposed approach in determining well
capture zones and examine the validity of the approach,
we consider saturate flow in a rectangular domain of a
heterogeneous porous medium. Although the developed
model is applicable to solute transport in transient flow,
for simplicity, we restrict our examples to steady-state
flow conditions. The flow domain has a length L1 ¼ 20 (L)
(where L is any consistent length unit) and a width L2 =
12 (L), uniformly discretized into 50 · 30 square elements
of a size 0.16 [L2]. The statistics of the log hydraulic
conductivity are given as hY i ¼ 0:0(i.e., the geometric
mean saturated hydraulic conductivity KG ¼ 1.0 [L T–1],
where T is any consistent time unit), r2

Y ¼ 0:5, kY ¼ 2.0
[L], which equals the length of five elements. The no-flow
conditions are prescribed at two lateral boundaries. The
hydraulic head is prescribed at the left and right bound-
aries as 10.0 [L] and 10.5 [L], respectively, which produces
a background flow from the right to the left. A well with a
pumping rate of Qw ¼ 0.16 [L3 T–1] is placed at (4.8 [L],
6.0 [L]).

For the purpose of comparison, we conduct Monte
Carlo simulations. Using the random field generator,
sgsim, developed by Deutsch and Journel (1998), we
generate 5000 two-dimensional unconditional Gaussian
realizations satisfying the above specifications. The sat-
urated steady state flow equation is solved for each
generated realization of the log hydraulic conductivity,
using the Finite-Element Heat- and Mass-Transfer code
(FEHM) developed by Zyvoloski et al. (1997). For each
realization, once the flow field is solved, the velocity is
negated and 42 non-reactive particles are placed on a
circle of r ¼ 0.4 [L] around the well. We then record each
particle’s position at some given times until it leaves the
domain. Scatter plots of particles at some elapsed times
in Monte Carlo simulations are compared against the

mean capture zone and its confidence intervals at these
times resulted from the ME approach.

In the illustrative example, we compare results of
Monte Carlo simulations (scatter plots of particles at
some given times) against the statistics of well capture
zones (the mean and confidence intervals) computed
from three different methods that distinguish from each
other by the source of velocity statistics (from Monte
Carlo simulations or the moment-equation approach)
and by the way with which the transition matrix B is
derived. In the first method, we use the sample mean
velocity field and sample velocity covariances computed
from Monte Carlo simulations as the input Eulerian
mean velocity field and velocity covariances to the first-
order stochastic transport model, i.e., Eqs. (7) and (8),
but compute the transition matrix B using the potential
theory. By using the velocity statistics from Monte Carlo
simulations, we ensure that the stochastic transport
model and the Monte Carlo transport simulations have
the same underlying flow field and are thus compatible.
The mean flow field is illustrated in Fig. 1, where the
solid lines with arrows are streamlines. Particles are then
released in the mean flow field at the same locations as in
Monte Carlo simulations. The particles’ mean (first-or-
der) positions ÆXtæ and their displacement covariances
Xij at any time then can be calculated using (7) and (8).
The mean capture zones (white, solid curves) and con-
fidence intervals (inner and outer curves, shown in dark
and light, respectively) are constructed with the proce-
dure described in the previous section and compared
with Monte Carlo simulation results at two different
times (Fig. 1). It is seen from the figures that mean
capture zones and their associated uncertainties derived
with this hybrid ME-MCS approach are in excellent
agreement with the Monte Carlo results.

Figure 2 compares Monte Carlo simulation results
(dots) and the mean capture zones with confidence
intervals derived from using the flow statistics of Monte
Carlo simulations while the B matrix computed using
the first-order analytical solution (Lu and Zhang,
2003b), which is an infinite series. Though the results
from the first-order transport model are in excellent
agreement with Monte Carlo simulations, the agreement
is not as good as in the previous case, because of
the numerical errors (truncation errors) introduced in
computing the B matrix. The accuracy of this
method depends on the number of terms included in

Fig. 1a,b Mean flow (stream-
lines) and comparisons of Monte
Carlo simulations (dots) against
the mean capture zones with
confidence intervals derived
using flow statistics from Monte
Carlo simulations and the B
matrix from the potential theory
for two elapsed times. a t ¼ 10 T
and b t ¼ 20 T, for r2

Y ¼ 0:5
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approximating the B matrix. Besides, the computational
demanding is high for this method than for the potential
theory.

As the ME approach is an alternative to the com-
putationally demanding Monte Carlo method, it is ex-
pected that the velocity statistics that are input to the
moment transport model (7) and (8) should be derived
directly from solving the flow moment equations, i.e.,
(4)–(6), rather than from Monte Carlo simulations.
Figure 3 depicts comparisons of scatter plots of parti-
cle’s positions from Monte Carlo simulations and the
mean capture zones with confidence intervals derived
using the flow statistics from the first-order ME ap-
proach while the B matrix is computed from the po-
tential theory. Though in general the results from the
first-order moment-equation approach are close to
Monte Carlo results, the agreement between two ap-
proaches is not as good as in the previous two cases in
which the velocity statistics from Monte Carlo simula-
tions are used as input to first-order transport model.
The major difference is on the mean capture zones,
especially in the downstream direction. In this direction,
the magnitude of the mean velocity computed from the

moment-equation approach is slightly smaller than that
from the Monte Carlo simulations. This may be due to
errors induced in computing mean velocity in the first-
order ME approach. In other words, the first-order ME
approach is not accurate enough for this strongly non-
uniform flow field with r2

Y ¼ 0:5 although literature re-
sults indicate that the first-order ME flow approach is
robust for uniform mean flow, giving accurate results for
r2

Y as large as 4 (e.g., Zhang, 2002). If this is the case, it is
expected that the agreement will be improved signifi-
cantly for a smaller variability of log hydraulic con-
ductivity. To verify this, we conduct the second
numerical experiment by reducing the variability of log
hydraulic conductivity from r2

Y ¼ 0:5 to r2
Y ¼ 0:16:

Figures 4 and 5 illustrate the comparisons of Monte
Carlo simulation (MCS) results against the mean cap-
ture zones with confidence intervals derived using the
velocity statistics from Monte Carlo simulations (Fig. 4)
and from the first-order ME approach (Fig. 5). It is seen
that at this variability of log hydraulic conductivity, the
mean capture zones and the confidence intervals
obtained by employing the velocity statistics from the
ME approach are almost as good as those derived from

Fig. 2a,b Comparisons of
Monte Carlo simulations (dots)
against the mean capture zones
with confidence intervals derived
using flow statistics from Monte
Carlo simulations and the B
matrix from the analytical solu-
tion for two elapsed times. a
t ¼ 10 T and b t ¼ 20 T, for
r2

Y ¼ 0:5

Fig. 3a,b Comparisons of
Monte Carlo simulations (dots)
against the mean capture zones
with confidence intervals derived
using flow statistics from the
moment-equation approach and
the B matrix from the potential
theory for two elapsed times. a
t ¼ 10 T and b t ¼ 20 T, for
r2

Y ¼ 0:5

Fig. 4a,b Comparisons of
Monte Carlo simulations (dots)
against the mean capture zones
with confidence intervals derived
using flow statistics from Monte
Carlo simulations and the B
matrix from the potential theory
for two elapsed times. a t ¼ 10 T
and b t ¼ 20 T, for r2

Y ¼ 0:16
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using the velocity statistics of the Monte Carlo simula-
tions.

There are two approximations in the full ME ap-
proach: One being associated with flow and the other
being with transport. When the flow moments are given
without approximation (using the Monte Carlo results),
the ME based transport approach gives accurate results
compared to the Monte Carlo transport approach at
least for the variance of log hydraulic conductivity
r2

Y ¼ 0:5 (Figs. 1 and 2). However, there exists a differ-
ence between the flow moments from the ME and MCS
approaches for r2

Y ¼ 0:5 (not shown), which leads to the
discrepancy in the delineation of the well capture zones
(Fig. 3). A possible reason is that for porous media with
a high variability on log hydraulic conductivity, the first-
order ME approximations of flow statistics are not
sufficiently accurate for strongly nonuniform flow fields
as considered here. For such a flow field, higher-order
corrections may be needed to render accurate flow mo-
ments even for the relatively small variability of
r2

Y ¼ 0:5, contrary to uniform mean flows where the
first-order ME approach is found to give reasonable
results for r2

Y as large as 4 (e.g., Zhang, 2002).

6 Summary and conclusions

It is possible to apply the stochastic moment-equation
approach to construct time-dependent well capture
zones and evaluate their uncertainties for multiple wells
(pumping or injection) with a uniform mean background
flow in bounded randomly heterogeneous porous media.
The flow statistics can be obtained by solving the first
two moments of flow, and the mean capture zones are
determined using the mean velocity field by reversely
tracking the non-reactive particles released at a small
circle around each pumping well. The uncertainty
associated with the mean capture zones is determined by
the particle displacement covariance Xij developed for
nonstationary flow fields (Lu and Zhang, 2003a). We
compared the scatter plots of particles’ positions in
Monte Carlo simulations against the mean capture
zones with confidence intervals computed using flow
statistics from both Monte Carlo simulations and the
first-order moment equation (ME) approach. It is
evident that, for a small variability of log hydraulic
conductivity, the results from moment-equation

approach are almost as good as those from Monte Carlo
simulations, while the computational effort for the mo-
ment-equation approach is much less. When the vari-
ability of log hydraulic conductivity is relatively large,
the results based on our moment approach deviate from
the Monte Carlo results, especially in the downstream
direction of pumping wells. A possible reason is that for
porous media with a high variability of log hydraulic
conductivity, the first-order ME approximations of flow
statistics are not sufficiently accurate for strongly non-
uniform flow fields as considered here. For such a flow
field, higher-order corrections may be needed to render
accurate flow moments even for relatively small vari-
abilities of log hydraulic conductivity, contrary to uni-
form mean flows.
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